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proposed in /9/ for certain polymers fox a time-indpendent operator pOof the form (13). 
Therefore, unlike infinitesimal strains, the construction of a viscoelastic analogue of 

the elastic law is not unique for finite strains. 
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A METHOD FOR SOLVING PARTIAL DIFFERENTIAL EQUATIONS 
USING DIFFERENTI~LE TRIGONOMETRIC FOURIER SERIES* 

A.I. POLUBARINOVA 

A method for representing a function of two variables ZL(Z,&I), that is 
defined in the square s= [O,nJ x (O,n], is presented in the form of a 
combination of polynomials and differentiable trigonometric series. Such 
a representation enables problems to be solved in which the unknown 
function is defined from partial differential equations and has some 
partial derivatives at the border of the square domain of higher order 
than the order of the equation. Expansion in a trigonometric series is 
carried out by a system of functions {siam+,m= 4,&s...} that is full in 
(0,nl and in a double series by a system of functions (sin mz sin ny, m, II = 

1, 2, 3,. . .} that is full in (7, For solving real problems, expansion by 
such a system of functions can be preferable to expansion by an ordinary 
trigonometric system of sines and cosines /l, 2/. Using the representation 
of a function of two variables referred to above the problem of the 
bending of an anisotropic plate with non-uniform boundary conditions is 
solved. 

1. Formulationand foundationof themethod. Definition1. A functionf(z),sE (o,sliseven 
(odd) over (0,nl relative to the point n/2 if f (z) = f (n -z), z E (0, n), (f (2) = --f (n - z), I E"_ (0, xl). 
A function F(z,Y),(I,~)Eo is even or odd in z and g if the corresponding relations on the 
argument I or y are satisfied. 
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Definition 2. A function F(z,y), (z,y) E CJ is a function with strictly defined parity if 
the parity of F (z,y) is known for every argument. This concept carries over analogously for 
a function of one argument. 

We shall formulate a lemma on the possibility of termwise differentiation of the Fourier 
series of a function f(z) according to a system of functions (sinmz,m= 1,2,3,...] on [O,n]. 

Lemma 1. Let f(x) be a function with strictly defined parity. Let there exist in [0, n] 
continuous derivatives f$, I= i,&...p + 2, where 

fp (0) = 0, I = 0, 1, * * . p (1.1) 

Moreover, let the derivative fiPt2 be representable as a Fourier sine series. Then the 
Fourier sine series of the function f(z) can be differentiated term by term 2p+2 times. 

Conditions (1.1) ensure the continuity of an odd extension of the function f(z) on r-x, 01 

and also of the even derivatives of this extension right up to order 2p. At the same time the 
derivatives f:L+l,Z = 0, 1, . . . p are automatically continuous in [--~,n] as the functions are even 
in this interval. The equalities fXk(-s)= f%“(n), k= 0,1,.. 2p +,2, are also obvious. Thus the 
well-known conditions /3/ are satisfied for the termwise differentiability of the Fourier 
series of f right up to order 2p -+2. 

Lemma 2. Let F (+, Y) be a function with strictly defined parity. Let there exist 
everywhere in a continuous partial derivatives FJl,l =i, 2, . . . p j-i that satisfy the conditions 
Fzzl (0, y) = 0, Fuz'(s, 0) = 0, 1 = 0, 1, . . .p. Moreover, letallderivatives FXV 2p+a berepresentableino bytheir 

double Fourier sine series. Then the double Fourier sine series of the function F (5, Y) can 
be differentiated term by term to obtain the derivatives F&S,r+s<2p + 2. 

Extending F(z, Y) in an odd way (argument by argument in I--n,ol and by reasoning in the 
same way as for the proof of Lemma 1, we arrive at the known conditions for termwise dif- 
ferentiabilityofthe double Fourier series of F (z, y), 2, y E L-n, .n] x ]-J-c, Xl. 

Theorem. Suppose that U(X,Y) is a function with strictly defined parity in IJ. Suppose 
that the partial derivatives uxpP (0, y), uy*p (z, 0), u:F (0, 0) exist. Then the unique representation 

11 (x9 Y) = F (z, 8) + y, h, (I) $‘k (Y) f z: ge (Y) ‘Fc (=) + x d,ch, @) ge (y) 
k c k, e 

(1.2) 

exists, where: 1) hk (x), g, (y) are any polynomials in I and y respectively that have exactly 
the same parity as U(I,Y) with respect to the corresponding arguments, and have the following 
properties: an even polynomial ha(z) has degree 2k, an odd polynomial has degree 2kt 1 and 
da"hk (0)/dz2' + 0; analogous conditions are applied for gc(y) depending on its parity; 

2) the unknown functions F (2, y), 'pc (I), $k (y) have exactly the same parity as u&y) with 
respect to the corresponding arguments and have partial derivatives that satisfy the conditions: 

6 (0) d*‘$ (0) 
F$(O,y)=O, <&O)=O, A=O, A=u 

dz2’ dy" (1.3) 

Here and afterwards unless otherwise stated the indices c, k 6 9, r, and s take the values 
0, 1, . p; summation over these indices is carried out from o to p. 

Proof. Uniqueness. For brevity we shall put 

hf’ (z) e &h,(z)/d& g;'(y) c d2'gc (y)/dy" 

Suppose that there exists a representation (1.2) for U&Y) I and P (z, Y), ve W,$k (Y) satisfy 
conditions (1.3). We differentiate the equality (1.2) 21 times with respect to I for z=O. 
Taking into account the first and third conditions of (1.3) we obtain 

x h;‘(O) JI, (Y) = t$ (0, Y) - 2 d h*! (0) gc (Y) 
k k.e kc ” (1.4) 

Differentiating (1.2) 2q times with respect 
first and fourth conditions of (1.3) we obtain 

to IJ for y= 0 and taking into account 

Differentiation of (1.4) 2q times with respect to 5' for y = o taking account of the 
fourth condition of (1.3) gives 

r d hZ'(0)g,2Q (0) = 16:; *¶ (0, 0) 
k; kc k (1.6) 

In system (1.6) there are (p+i)* eqUatiOns and the same number of unknowns dke_ We shall 
show that their solution exists and is unique. The proof is by induction. In (1.6) putting 
l=q=p we obtain d,,h,*p (0) gpaP (0) = u$'~ (0, 0) since hkzp = gcapf 0 for k,c < p, and h,2P (0) + 0. 
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gp*p(0)+O in view of condition 1) of the theorem. From this we can uniquely define d,,. 
Suppose that all the dkc, k-+-cat have been found using all the equations of system (1.6) 

for which 1$ q>t. We shall find all the dTS for which rSs= t- 1. For this we consider all 
the equations of system (1.6) with numbers l=r,q=s. Each such equation contains only one 
unknown d, with coefficients ~~*(0)g~z~(O)~O in view of condition 1). The remaining drc 
are such that k+c>t, i.e. they are known. Thus from all the equations with numbers E= r,q= 

s,r+ s= t- 1 all the u& are uniquely defined. The existence and uniqueness of the solution 
of system (1.6) is proved. _ 

Substituting these uniquely found & into (1.4) and (1.5) we obtain two linear systems 
of equations for finding Q(Z), qk (y). In view of condition 1) these systems will have a zero 
determinant and, consequently, cpc(z) and $8 (v) can be uniquely defined from them. sub- 
stituting cpc (& 3k (y) and dkc into (1.2) we obtain F(z, Y) uniquely. 

Existence. we will prove the existence of the representation (1.2) with the functions 

&'(G Y), 'PC (t), ‘#k (y) that satisfy COnditiOnS (1.3) dkc is found from system (1.6) and the 
Q(X), $I~(Y) that correspond to the dke are found using (1.4), (1.5), F(r,y) is found from 
(1.2). We shall prove that the functions obtained satisfy conditions (1.3). We differentiate 
(1.4) 2q times with respect to y for y=O. On the basis of (1.6) we have 

2 hf (0) *p (0) = 0 
b 

The determinant of this system is non-zero in view of condition 1). This means that 
the system has only a trivial solution. This proves the fourth condion of (1.3). The third 
condition of (1.3) is proved analogously. 

Differentiating Eq. (1.2) 22 times with respect to z for Z= 0 and using the third 
condition of (1.3) hnd Eq.(1.4) we ascertain the correctness of the first condition of (1.3). 
The second codition is proved analogously. 

Corollary. Now let u(z,~) be a function with strictly defined parity that has continuous 
derivatives I.L:~ in a; u~~*P+~(O, 9). ZL~","~ (x,0) on [0,x] and let all of them be representable 

by their Fourier sine series in s and on lO,nl respectively. Then from the theorem and 
Lemmas 1, 2 we have the existence and uniqueness of the representation 

0.7) 
m.n 

3 g, (Y) 3 ‘~,,,‘sin VU + 7 d h (4 gc (Y) 
e m k c kc k 

where all the series can be differentiated term by term to obtain the partial derivatives 
u~,r+S~2Piz;n=i,3,5,..., u (z, Y) 5? m == Y&4,6,. .., if * 6% Yl is 
an odd function in 5. Depending on the parity of u&y) with respect to TV, values of the 
index n are defined analogously. 

2. Calculation of an anisotropic plate. Consider the boundary value problem for 
an anisotropic plate in the quadratic domain s with border I'" 

aam 
AY%K+B axsay= 

-._%!-+C + -P'(.r, y) 

w Ira=ao (2, y), awlan Ire== - v (5. Y) 

The functions a"(z,y) and ~(z,Y) are given in f*. Each of the functions P”(z, y), a“(~, y), B”(x, y) 
is expanded in four terms so that each is a function with strictly defined parity. We shall 
look for a solution to problem (2.1) in the form of a sum of the solutions of the four 
problems of the form 

II IF = a (z, Y), au/an lI: = 4 (6 Y) (2.3) 

where P (z, ~1, a (Y, Y) ad B (2, Y) are functions with the same strictly defined parity; r= ((GO), 
(O,y).=, YE [O,nl} is a section of the boundary P. 

Assume that the functions P&y), CL(Z,~), B&y) ensure that the conditions that follow 
from the theorem are satisfied for the solution of (2.2) and (2.3). Then a solution in the 
form (1.7) can be sought by putting p = 1. In this case all the series in (1.7) can be 
differentiated term by term for finding the partial derivatives u:b",r$‘s<4. 

Here and everywhere afterwards in solving (2.2) and (2.3) the values of the indices m 
and n and also of the functions ~,(Z),%(Z),&(B). and &(y) are chosen in the following way: 

P (x, y) is even in 5: m = 1, 3, 5, . .., ho (4 = n/4, h, (5) = II= (n - 1)/8; 
P (z. y) is odd in x: m = 2, 4, 6, . . ., h, (.r) = (n - 2.2)/4, h, (2) = z (n - z) (n - 2.~)/24. 
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The index n is changed in the same way as m but depending on the parity of P (2, v) with 

respect to Y. g,, (y) = ho (Y), gl (Y) = h, (Y). (The coefficients of the Fourier sine series of the 
functions h,(~),h,(~) have the simplest form: l/m and l/m' respectively, by which the choice 
of these functions is determined.) 

Substitution of the first boundary condition (2.3) into the representation (1.7) leads 
to the equality 

a, (19 ,;= e (G 0) go, ;",,; hi,, (x) a (0, Y) - a (070) ho, (4 go, (y) 

ho, (4 = 4, (dho (0). go. (Y) = go (y)/go (0) 

Substitution of (2.4) into Eq.(2.2) and the second boundary condition (2.3) gives 

h (.t) 
u (2, Y) = a* (G Y) + d&l (4 g, (Y) -t 7 ix &sinny + li 

(2.5) 

sinmzsinny 
ab a*a 

P-AT-C- 
w I 

R 
2=y*” mn 

= Ame + BmW + CR@ 

The coefficients Cn=AUPn', nm=C~m' are the solution of the infinite system of equations 

r, +,+z2 
mQ,, 

=vn- K r: (2.6) mn m m m 

G ?i 

where sr b, Qmn are the coefficients of the Fourier sine series corresponding to the following 
functions: 

Y W = 8 (0, Y) -I B P, 0) a+ (Y) - [a (0. Y) -a (0, 0) gw (Y)I W (0) - 
dn4’ (0) gl (Y), 6 (4 = B (.? 0) 4 B 64 0) ha* (d - 
l~(~,O)--aO,O)h,(~)lgo’(O)--~lhl(~)g~’(O), Q(GY)=P(~,Y) 

@a 
Aat, (+I 0) gw (Y) - C -$ (0, Y) b (4 - 41% (5) go (Y) 

- 

Thus formula (2.5) reflects the solution of (2.2) and (2.3) in terms of,the knownfunctions 
P (r, r), a (G Y), B (2, 81, ho (4, k (4, go (Y), yl (II) and the solution of the infinite system (2.6). All the 
series in (2.6) can be differentiated term by term to find the derivatives a!&',~+~<&. 
Expanding %(z), g,(y) in a Fourier sine series we obtain the more compact representation 

of a series in which, however, it is not possible to differentiate termwise. 
Solving (2.2) and (2.3) for the components of the load-and for the boundary conditions 

of a different strictly defined parity and adding the four solutions obtained we obtain a 
solution of (2.1). Note that the condition of ellipticity of (2.1) ensures that Km,+0 for 
any m,n. 

The question of the existence and uniqueness of the solution and also of methods of 
solving system (2.6) are of particular interest. We note that in general, it is not possible 
to reduce system (2.6) to regular form 141. However, a change of variables 

t= nt. tlm=m;im (2.7) 

transfers (2.6) to an infinite system which can be solved by the method proposed in /4/ for 
quasi-regular systems. We often meet the case when A = C, P” (2, y) = P” (y, s), a* (z, y) = a” (y, z), j3“ (+, 

y)=@‘(y,z), and system (2.6) reduces to a regular form. So that it can be solved by the 
reduction method /4/, it is sufficient that the order of decrease of the coefficients of the 
Fourier sine series of the functions P"(z,y), a'(~.~), V&I/) should be not less than i/(mn). 

As an example consider the problem of the bending of a rigid weighted isotropic plate 
under a uniform load in a domain 0. We have P"(z, y)~ Pa; A = C = 1; B = 2, a"(z, y) = fP (z, y)~ 0. The 
deflection is expressed in the following way: 

12.8) 
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in terms of the solution (6,) of the infinite system 

z m &*“a). L+ z N, 1 
(m* - + g)* = 7 7 In, " = 1, 3, 5,... 

m 

The series (2.8) converges rapidly. It is sufficient to determine the first five values 
of 5n in system (2.9) by the reduction method, and the corresponding partial sum of the series 
(2.8) gives a good approxomation to the known solution of the problem /5/. 

Note that to solve (2.1) a method analogous to that demonstrated in /l/ was chosen since 
it is more suitable for solving problems with non-homogeneous boundary conditions. Eq. (2.1) 
can be solved also using two representations of the unknown function /2/ by using in this 

case a system of sines that is complete in IO, nl for the expansion in a Fourier series. 
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L,D, LANDAU AND E,M, LIFSHITZ* 

The book in question (Theoretical physics, 1986, Vol.61 is the third edition of the part 
of the book "Mechanics of Continuous Media" (1953, 2nd ed.), which is concerned with hydro- 

dynamics and contains some addenda and changes. 

Some references are added in the new edition. To establish priorities, the first 

publications are indicated, often in sources inaccessible to Soviet readers. In view of this, 

we shall note some mistakes in these references. 

1. It is said on p.674 that it will be shown in Sect.130 that, in some special cases, 
detonation must inevitably correspond to the Chapman-Jouguet condition, and a reference is 

given, according to which the proof of this condition was obtained by Ya. B. Zel'dovich (1940) 

/l/, and independently, in some later works. Yet the arguments quoted in Sect.130 (p.678) 
amount to proving the impossibility of realizing supercompression of detonation (D<u,+a,) 

in many flows when a rarefaction wave is present behind the detonation wave. 

It must be said here that the unrealizability of supercompressed detonation in these 
flows had been well established before 1940. This was mentioned directly in /l/ with 

references to Wendlant's work /2/ (1924) and to Jost's book /3/ (1939), to which there are 

no referencesinthe present book. There are also no references to A.A. Grib's important 
results, published in his Candidate Dissertation presented in 1939 and defended in February 

1940 (see also /4/) and cited by many authors (see e.g., /5/j. In /6/ there is a reference 

to A.A. Grib in connection with the study of detonation, though not to /4/, but to a different 

paper not relating to detonation. 
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